インパルス応答測定におけるスピーカの基本波歪の検討*

o小林正明, 金田豊 (東京電機大)

1. はじめに

インパルス応答の測定において,系の非線 形性の影響で誤差が発生する.測定信号が掃 引正弦波(SS:SweptSine)の場合,この非線形 誤差としては,高調波歪と基本波歪(主応答 歪)が発生する.これらのうち,高調波歪は, Log-SS(ピンク TSP, ESS)信号などを用いれ ば分離除去できる.しかし,基本波歪は除去 が困難であり,また誤差としての大きさも高 調波歪と比べて,20dB以上も大きい[1].本 稿では,この基本波歪の性質を検討した結果 を報告する.

2. 基本波歪

図1は Logg-SS 信号で測定した,非線形 誤差を含むインパルス応答を示す. 図におい て,①は,基本波応答 (インパルス応答)を表 し,②,③はそれぞれ2次,3次の高調波歪 を表す.

図に示すように2次歪,3次歪は歪の発生 が明確であり,時間軸上で分離されているの で除去することができる.しかし,見た目で は分かりづらいが,基本波応答①にも歪成分 が発生している.入力信号レベルが小さく, 歪が小さい場合と比べるとその大きさが変化 している.この基本波応答①の変形を基本波 歪と呼ぶ.

3. 基本波歪の測定

基本波歪の特性を把握するために,測定信 号の種類,再生音圧,信号長を変化させて測 定を行った.

3.1 測定条件

測定は、図2に示すように、無響室において、測定信号をスピーカから再生し、1m 離して設置したマイクで受音し、PC に入力して、インパルス応答を測定した.測定信号は、TSP、Log-SS、M系列の3種類を使用した.

スピーカは BOSE101MM, アンプは BOSE 1705 II を使用した. 測定信号の音圧は, 受音 点で 30dB~100dB まで 5dB 刻みで変化させ

図2 測定のブロック図

た.サンプリング周波数は 48kHz とした. 各測定信号の実効長は 2¹⁵, 2¹³の 2 種とし, 同一の実効値を持つように振幅調整した.

<u>3.2 基本波歪</u>

測定されたインパルス応答に含まれる誤差 *E_mを*次式のように定義した.

$$E_m = 10 \cdot \log_{10} \frac{\sum_{n=1}^{N} (h_m(n) - \hat{h}(n))^2}{\sum_{n=1}^{N} (\hat{h}(n))^2} \quad (1)$$

ここで、 $h_m(n)$ は音圧がm[dB]で測定した時 のインパルス応答を表し、 $\hat{h}(n)$ は基準となる 高 SN 比のインパルス応答(音圧 55dB、実 効長 2^{19} の Log-SS 信号で測定)を表す.また、 nは離散時間を表し、n=1~N の区間はイン パルス応答の存在区間(図 1 の矢印)とする.

 E_m には雑音性誤差と基本波歪が含まれている. LogSS 以外の TSP や M 系列での測定では、この区間に高調波歪等が一部含まれるが、高調波歪等の大きさは基本波歪と比較すると十分小さいので、その影響は無視するものとした.

^{*} Study of fundamental distortion of the loudspeaker in an impulse response measurement. by KOBAYASHI, Masaaki and KANEDA, Yutaka (Graduate School of Engineering, Tokyo Denki University).

4. 測定結果

4.1 基本波歪量

図3、及び図4に各測定信号による誤差の 比較を示す. 図は横軸に出力音圧, 縦軸に式 (1)の誤差Emを示している. 図 3 は信号実効 長が 215の場合,図4は 213の場合である.図 において、横軸が 60dB 以下の部分は、雑音 性誤差が主体である. 雑音性誤差は測定信号 のスペクトルや長さに依存し,再生音圧に逆 比例する[3]ことがわかる.

一方, 横軸で 70dB 以上の部分は, 基本波 歪が主体である.図3,図4より,基本波歪 の大きさは、測定信号の型(掃引正弦波か疑似 雑音信号か: TSP と M 系列の比較)やスペク トル(TSP と Log-SS の比較), 信号長(図 3 と 図4の比較)にはほとんど依存しない.よって 基本波歪を減少するためには、再生音圧を小 さくすることが唯一の方法となる.

4.2 基本波歪波形の特性

図5にインパルス応答基本波形 $\hat{h}(n)$ と,再 生音圧 100dB の Log-SS で得られた,基本波 歪による変形を受けたインパルス応答波形 h100(n)を示す. 図より基本波歪はインパルス 応答波形に不自然な変形を与えないことがわ かる. 基本波歪を受けた波形と基準波形の相 関係数を計算した結果 0.986 であった.

また、周波数特性も数 dB 程度のピーク特 性の低下であり[1], このような基本波歪の影 響は厳密なインパルス応答波形を必要としな い残響時間測定等では、無視できる[2].

図 6 に再生音圧 100dB で 3 種の測定信号 を用いた時の誤差波形($h_{100}(n) - \hat{h}(n)$)を示 す. 基本波歪に起因する誤差波形は, 高調波 歪と異なって、

測定信号によらず、

ほぼ同一 となることがわかる.

5. おわりに

基本波歪は高調波歪より 20dB 以上大きな 誤差を与えるが、高調波歪と違ってインパル ス応答波形および周波数特性に不自然な変形 を与えない.よって残響時間測定などではそ の影響を無視できる.基本波歪は、測定信号 の型やスペクトル、長さによらず、インパル ス応答においてほぼ同一の大きさと形状の誤 差を発生する. 基本波歪の影響を軽減するた めには,再生音圧を下げることが唯一の方法 である.

参考文献

[1]佐々木,他,音響学会(秋),1-Q-27 (2013). [2]竹林,他,音響学会(秋), 3-P-18 (2016). [3] Y. Kaneda, J. A. E. S., 63, 5, 348-357 (2015). 謝辞

本研究の一部はJSPS 科研費 15H02728の 助成を受けたものです.