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Abstract— This paper proposes real-time sound source ori-
entation estimation based on orientation-extended amplitude
beamforming (OE-ABF). To recognize a sound source orienta-
tion (such as face orientation) is an important function for a
robot who can achieve natural human-robot interaction because
the function is required to distinguish the human target from
a robot or another person. We developed a sound source
orientation system using orientation-extended beamforming
(OE-BF) and showed the system worked properly at least under
a specific controlled environment. However, in practical use, this
system does not work properly because the system doesn’t take
into account the differences between the supposed model in OE-
BF and in practical situations. For example, the system model
supposes that there is neither noise nor reverberation, however,
this is not a realistic assumption. To solve this assumption mis-
match problem, we propose sound source orientation estimation
based on OE-ABF, and constructed a real-time sound source
orientation estimation system with the proposed method using
a 96ch microphone array. Evaluation results of our proposed
system show that the average error of estimated angles is lower
than 5◦, while the error of our previously reported system
was greater than 20◦. With this system, the robot is able to
distinguish that the utterance target of a person standing 1m
in front is itself or another person standing 0.2m to the left of
the robot. This is valuable for human-robot interaction.

I. INTRODUCTION

“Robot Audition” is important to achieve natural human-
robot interactions [1]. Sound source localization, separation
and speech recognition are primary functions for robot
audition. In fact, many algorithms and systems for these
functions have been proposed [2], [3], [4]. Sound source
orientation estimation is another important function because
a robot should recognize a source’s orientation such as face
orientation. This function is required to distinguish the target
of the human from a robot or another person. If we only
focused on face orientation estimation, then visual processing
would be effective [5]. However, even for face orientation,
audio processing has several merits. One of the merits is that
audio processing is not influenced by lighting conditions.
When we use a short humanoid type robot having camera(s)
on its face, for example Honda ASIMO, the elevation angle
of the robot’s face needs to be high to have eye-contact
with a human. In this case, the ”backlight” situation often
occurs because the line of the robot’s vision lies on ceiling
lighting. In this ”backlight” situation, to recognize face
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orientation using visual processing is difficult. Another merit
is computational cost. Audio processing requires much less
computational cost than visual processing, and therefore, it
is suitable for real-time processing.

There are a few reports about sound source orientation
estimation [6], [7]. In [7], we proposed a sound source ori-
entation estimation system based on an orientation-extended
beamforming (OE-BF) method using a microphone array.
However, this system has several issues and it is difficult
to use in practical environments. This paper proposes a
new orientation estimation system based on the orientation-
extended amplitude beamforming (OE-ABF) method this can
solve these issues and it can be used practically in real-time.

II. ISSUE AND APPROACH

The primary issues of the reported system [7] are:
• Low precision
• Pre-measure requirement of transfer functions (TFs)
• Parameter adjustment required by a human
• Low real-time factor.

Because the orientation estimation system [7] supposes an
ideal acoustic environment without any noises nor reverbera-
tions, the performance in practical environments is poor. Also
[7] does not take into account the difference between TFs of
the target human speaker and pre-measured TFs for OE-BF
coefficient design. Therefore, if we used a loudspeaker to
measure and make the OE-BF coefficient, the estimated ori-
entation would include many errors because of the difference
between a human speaker and a loudspeaker. In [7], an actual
human speaker, who is the subject for evaluating this system,
was used for pre-measurement. The system performance was
good enough. However, in practical use, we can not specify
who will use this system. Therefore, to get high performance
estimation we should measure all possible speakers’ TFs.
This is unrealistic and impossible. Parameter adjustment is
another problem of [7]. To distinguish whether the input
signal is voice or not, [7] uses a simple power threshold
method, that requires a threshold parameter. Because the
appropriate parameter is changed according to each uttered
voice level and orientation, we should decide the parameter
after recording each speaker and orientation. This is also
unrealistic because we can not know the uttered voice
level and orientation in advance. Moreover, since [7] uses
OE-BF for not only orientation estimation but localization
simultaneously, therefore the calculation cost will be very
high because it is proportional to the product of the number
of digitized locations and orientations. Also, simultaneous
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Fig. 1. Sound source orientation estimation model

calculation increases estimation errors by transferring the
error of localization into orientation and vice versa.

To solve these issues we propose a new system introducing
the following method and processes:

• Orientation-extended amplitude beamforming (OE-
ABF)

• Time-frequency mask
• Temporal histogram

OE-ABF is a beamforming method focused on amplitude of
TFs, which is robust to the difference of TFs, and solves
the low precision problem which originates from the TF
difference between the BF coefficient (loudspeaker) and
the input signal (human speaker). A time-frequency mask
is applied to exclude the low confidence time frames and
frequency bands. To use this mask, this system prevents
estimation precision from being degraded due to noises and
reverberations. A temporal histogram is introduced instead
of a simple power average. This improves the estimation
precision when the source’s spectrum is not widely spread.
The details of the method and processes are described in the
next section.

III. ORIENTATION ESTIMATION BASED ON OE-ABF

We used OE-ABF as a method for source orientation
estimation. OE-ABF is an advanced version of OE-BF used
in [7] regarding the input vectors and BF coefficient vectors.
OE-ABF is robust to acoustical environmental changes, for
example, source location and type. To explain OE-ABF
theoretically, first, we formulated the orientation-extended
transfer function and described OE-BF. Next, we proposed
OE-ABF and explained the details by clarifying the differ-
ence between OE-ABF and OE-BF. Finally, we will show
the orientation estimation using OE-ABF.

A. Formulation of orientation-extended transfer function

Acoustical transfer function (TF) is a prime function repre-
senting transfer characteristics from a source to a microphone
and is used for almost all acoustical signal processing. In
general, TF is treated as a function whose arguments are
locations of sound source and microphone and not their
orientations. However, in actual use, TF changes according
to sound source orientation (and also microphone orientation
if using a directional microphone) because the sound source
has a non-uniform directivity pattern. Therefore, TF should
be a function of not only the locations but the orientations.
Orientation-extended TF is the TF including the source ori-
entations as an argument. Fig. 1 shows a propagation model
including sound source orientation using an N -elements

microphone-array. S(ω) shows the sound source spectrum
where ω represents the frequency. Mk is the k-th microphone
(k = 1, 2, ..., N ) and Hk(ω, θS) denotes the transfer function
between the kth microphone and the sound source with
orientation θS . In this section, we suppose the source location
is fixed and known for simplicity. The recorded signal with
Mk is represented as

Xk(ω, θS) = Hk(ω, θS)S(ω). (1)

This equation can be simplified using a vector notation as

h(ω, θS) = [H1(ω, θS), ...,HN (ω, θS)]T , (2)
X(ω, θS) = [X1(ω, θS), ..., XN (ω, θS)]T ,

= [H1(ω, θS)S(ω), ...,HN (ω, θS)S(ω)]T ,

= h(ω, θS)S(ω),

where T denotes a transpose operator, X is defined as an
input vector and h is an orientation-extended TF vector.

B. Orientation-extended beamforming (OE-BF)

OE-BF is a beamforming method derived by extending
conventional beamforming (BF) regarding a source’s orien-
tation. BF is a method to make spatial directivity, and it
enables selective recordings. BF is able to make a sound
power map by steering the focus point of BF’s directivity,
and also estimate the sound source location by searching for
the maximum point of the power map[8].

By using orientation-extended TF when designing BF, we
can also make an orientation-extended BF (OE-BF) method
that can estimate sound source orientation by applying the
same method regarding location[7].

The OE-BF output is formulated as

C(ω, θS , θBF ) = g(ω, θBF )HX(ω, θS), (3)

where g(ω, θBF ) shows the BF coefficient whose focus
angle is θBF and H shows the complex conjugate transpose
operator. If we use a Delay-and-Sum method (DS-BF), the
BF coefficient g(ω, θBF ) is represented as

g(ω, θBF ) =
h(ω, θBF )

||h(ω, θBF )||
. (4)

C. Orientation-extended amplitude beamforming (OE-ABF)

OE-BF calculates C(ω, θS , θBF ) from an inner product
of two complex vectors g(ω, θBF ) and X(ω, θS). If we use
DS-BF, the output C(ω, θS , θBF ) is represented as

C(ω, θS , θBF ) =
h(ω, θBF )Hh(ω, θS)

||h(ω, θBF )||
S(ω). (5)

This inner product part h(ω, θBF )Hh(ω, θS) shows the
similarity between the TF for BF coefficient and the actual
TF when the source produces the sound. Therefore, if the
target sound source differs from a sound source used for the
BF coefficient design, the output C(ω, θS , θBF ) decreases
even if the orientation is the same. In the reported system [7]
using OE-BF, BF coefficients using the same sound source,
that is a voice utterer, is applied. However, it is impossible to
make all BF coefficients of possible voice utterers. Therefore,
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Fig. 2. Diagram for proposed method

the reported system [7] can not be used as a practical system
at all. For this problem, a system that is robust for source
differences is desired.

To solve this problem, we propose orientation-extended
amplitude beamforming (OE-ABF) . According to a pre-
liminary analysis of TF differences regarding source type,
we found that the phase of TF was easily changed by the
source type, but the amplitude was not strongly changed.
This tendency is particular in high frequency because the
phase difference regarding the geometrical difference is anti-
proportional to the wavelength, while the amplitude differ-
ence is independent to the wavelength.

For OE-ABF, we use amplitude-based TF vector
ha(ω, θS) and input vectors Xa(ω, θS) as

ha(ω, θS) = [|H1(ω, θS)|, ..., |HN (ω, θS)|]T , (6)
Xa(ω, θS) = [|X1(ω, θS)|, ..., |XN (ω, θS)|]T (7)

OE-ABF output is represented as

Ca(ω, θS , θBF ) = ga(ω, θBF )HXa(ω, θS), (8)

where ga(ω, θBF ) shows the amplitude BF coefficient. The
DS-BF coefficient of OE-ABF is calculated as

ga(ω, θBF ) =
ha(ω, θBF )

||ha(ω, θBF )||
. (9)

With this BF coefficient, the output Ca(ω, θS , θBF ) can be
calculated as

Ca(ω, θS , θBF ) =
ha(ω, θBF )Hha(ω, θS)

||ha(ω, θBF )||
|S(ω)|. (10)

Therefore, OE-ABF output is proportional to the inner prod-
uct between ha(ω, θBF ) and ha(ω, θS), which represents the
TF similarity of the BF coefficient and the recorded signal
vectors.

D. Orientation estimation based on OE-ABF

Fig. 2 shows the diagram for our proposed orientation esti-
mation, that uses the OE-ABF method as a core process and
also introduces a time-frequency mask and a histogram as
additional processes for improving estimation performance.
Basically, the estimated orientation is calculated as an angle
θ̂ωt(ω, t) which maximizes Ca(ω, θS , θBF ) regarding θBF .
This θ̂ωt(ω, t) is denoted as two functions: frequency ω and

time t, because this value is calculated over all frequency
bands and time frames although t had been ommitted be-
fore because of simplicity. To decide the final estimated
orientation angle θ̂ from θ̂ωt(ω, t), we should apply some
gathering process. For the reported system [7], we used a
simple power average over all frequency bands and time
periods. However, this simple average is not robust to noises
and reverberations because no excluding process for them is
applied in the average. Also the power average degrades the
precision when the source signal does not have a wide power
spectrum because the low power bands are almost ignored
in the average even if the signal-to-noise ratio (SNR) is
high enough for estimation. To solve these problems, a time-
frequency mask is applied to exclude low confidence data for
orientation estimation and a histogram is used as a gathering
process to improve precision for a non-wide spectrum source,
such as speech vowels.

The final estimated orientation angle is calculated as

θ̂ = argmax
θ

[CHist(θ)], (11)

where argmaxθ[C(θ)] represents the argument θ that max-
imizes the function C(θ) and CHist(θ) is a histogram of
estimated orientation angle, whose derivation is described in
the next subsection.

This process corresponds to a digital weight version of
[9], which uses pre-whitening and spectral weighting. Since
our method requires only multiplications, the calculation
cost is much lower than [9], which requires divisions and
exponentials with floating-point exponents.

1) Histogram: In the reported system [7], which uses a
simple power average, the averaged result is strongly affected
by high power frequency bands, but less affected by low
power bands. This means that a limited part of the frequency
bands is taken into account, even if the source spectrum
includes all frequency bands. For example, for the speech
source, high frequency bands (over 4kHz) are not counted
because the power of low frequency bands (below 1kHz) is
much larger than that of high frequency even if the SNR is
high enough for estimation. To counter this phenomenon, we
introduce a histogram CHist(θ) as

CHist(θ) =
∑
ω,t

w(ω, t)U(ω, t, θ) (12)

U(ω, t, θ) =
{

1 if θ = argmaxθBF
[Ca(ω, θS(t), θBF )]

0 otherwise,
(13)

where w(ω, t) shows the time-frequency mask described in
the next section.

2) Time-frequency mask: We calculated this mask as
w(ω, t) = wω(ω, t)wt(t), where wω(ω, t) shows the fre-
quency mask of time t and wt(t) is the time mask. The fre-
quency mask is calculated based on an input auto-correlation
function and the time mask is derived from the result of
voice activity detection (VAD). First, we explain VAD for the
time-mask. The conventional system uses a power-threshold
method for VAD. This method has difficulties in deciding
the threshold value because the appropriate value varies
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according to the environment, for example, speaker location
and background noise power. Therefore, the conventional
system needs to be used in a fixed environment and the
threshold value needs to be adjusted manually. To solve
these issues, we used an auto-correlation based VAD, which
evaluates a periodic property of vowels [10]. This method
has the following advantages:

• Not influenced by source power
• Robust to non-periodic noises
• Not required to adjust parameters manually.

The process is as follows:

• Calculate auto-correlation function ϕ(τ) of input signal
with a truncated window of length L, where τ is the
delay time.

• Search the minimum delay time τmin that is the earliest
delay time having the condition ϕ(τ) < β, where β is
a parameter.

• Get the maximum correlation value ϕ(τ)max in the
range τ > τmin.

• Make the decision: if ϕ(τ)max > α then ”Voice”
otherwise ”Non-voice”.

Based on this decision, the binary time-mask wt(t) is made
as

wt(t) =
{

1 Voice active period
0 Pause period . (14)

After preliminary experiments of this VAD, we found that
the estimated orientation included many errors in the last
part of the voice period because of reverberation. To solve
this problem, we excluded the last Lt part from the voice
period. We decided these parameters heuristically as α =
0.5, β = −0.2, L = 1024, Lt = 1024, and used the setting
in all experiments.

Next, we describe the frequency mask. Conventional meth-
ods use all frequency bands without concerns for SNR. In
this case, because the estimated orientations of low SNR
frequency bands have many errors, estimation precision be-
comes poor. To solve this, we introduced a binary frequency
mask wω(ω, t) based on SNR as

wω(ω, t) =

 1 if maxθ[Ca(ω, θS(t), θ)]
> meant[maxθ[Ca(ω, θS(t), θ)]]δ

0 Otherwise
,

(15)
where maxθ shows the maximum value regarding θ, meant

denotes the time-average and δ is the threshold parameter.
In this paper, we decided δ = 1.5 heuristically.

IV. REAL-TIME SOUND SOURCE ORIENTATION
ESTIMATION SYSTEM

We made a real-time sound source orientation estimation
system using previously described OE-ABF and additional
processes. Fig. 3 shows the system diagram. Each module in
the system is explained in the following subsections.

1. Room Mic. Array

(ECM-C10, 96ch)

2. Mic. Amplifier

(Balanced line)

4. Data I/O

module

(Linux PC)

5. Orientation

Est. module

(Linux PC)

6. Viewer

module

(Windows PC)

Mic. cable

(0.5~1m)

Balanced line

(10~20m)

TCP/IP

3. BF calc. module

(RASP2, 6 units)

TCP/IP

TCP/IP

Fig. 3. Real-time location and orientation estimation system

0° direction

Fig. 4. Arrangement of microphones

A. Room microphone array (1)

The room microphone array configuration was composed
of 96 microphones embedded in the walls. The size of the
room was 4.0 m × 7.0 m× 3.0 m, and the reverberation time
(RT20) was 0.23 s. Fig. 4 shows the microphone locations. In
this figure, the ◦ marks show the locations. 64 microphones
were used mainly for horizontal plane estimation and located
in the walls with almost the same spacing between each
microphone. The other 32 microphones were for improving
vertical estimation precision and used for 4 linear same-
spaced arrays. All microphones were SONY ECM-C10,
which are non-directive type microphones with 70dB SNR.
All microphones were connected to amplifiers with cables
less than 1m in order to prevent noise from environmental
electro-magnetic waves.

B. Microphone amplifier (2)

Microphone amplifiers were AEMM-04 made by Nittobo
Acoustic Engineering. AEMM-04 had 4ch microphone am-
plifiers with power supply and balanced output functions.
The outputs were sent to BF calculation modules by balanced
cables with shields. Because the calculation modules were
outside the room, the cable length was 10-20m. Although
the cables were long, signal degradation was limited because
of the balanced lines and amplifiers.

C. BF calculation module (3)

We used 6 RASP2 made by JEOL system technology as a
BF calculation module. RASP2 had 16ch A/D converters and
a CPU, on which Linux OS could be run. 1) Sound source
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localization and 2) orientation estimation up to similarity
calculations of each frequency were processed.

1) Sound source localization: We used steered DS-BF
for localization. The TF for the DS-BF was measured using
an omni-directive loudspeaker (B&K 4295). The BF focus
points were 221 points decided by digitizing the search space
of the room (4m × 3m) using a 0.25m square mesh. To
reduce calculation costs, dominant 5 frequency bands with
high SNR were selected and processed. A maximum of 3
possible sources were detected by this process.

2) OE-ABF output calculations for orientation estimation:
The OE-ABF output Ca(ω, θS(t), θ) was calculated using
a prepared BF coefficient, only at the source positions
estimated from the localization process. The BF coefficients
are calculated and buffered using 1769 TFs measured by a
directive loudspeaker (Generec 1029A) placed at all possible
221 positions and 8 source orientations (45◦ step). For further
cost reduction, we limited the frequency band to 1kHz.

D. Data I/O module (4)

We used middle-ware MMI Ver.2 [11] as a Data I/O
module that can manage various types of data and treat
asynchronous data. Output data from BF calculation module
and estimated orientation data of the estimation module were
transferred through this module.

E. Sound source orientation estimation module (5)

This module calculated the final estimated orientation from
BF output data and sent it to a viewer through MMI. First,
this module made a time and frequency mask based on SNR
of each time frame and frequency band. Next, using these
masks this module made the histogram of the estimated
orientation for each frequency band and time frame. Finally,
this module decided the source orientation by taking the
orientation in which the histogram becomes the maximum
value. To smooth out estimation data, this module excluded
the time frames in which the estimated source position was
highly non-continuous. These non-continous time frames
were decided as the frames in which the source moving speed
was higher than the highest walking speed.

F. Viewer module (6)

We used an MMI viewer as the viewer module to display
the estimated position and orientation with the experimental
room graphically. This module used OpenSceneGraph 1. Fig.
5 is an example of the viewer display. Using this viewer,
we could confirm that the system could estimate the source
position and orientation correctly and work in real-time.

V. EVALUATION

We performed experiments to evaluate our proposed
method. To show its effectiveness, we compared it to the
reported system [7] under the same condition. To do so,
we focused on their orientation estimation performance, and
did not take into account the localization errors nor the
errors originating from the frequency band limitation. In this

1http://www.openscenegraph.org/projects/osg

 

Fig. 5. Viewer display example

section, after we described the BF coefficient dataset and
speech data for evaluation, we analyzed each orientation
estimation process to make sure that the algorithm was
working properly (Exp. 1 in Sec. V-A). Next, we evaluated
the estimated orientation errors for both methods (Exp. 2
in Sec. V-B). We also demonstrated our real-time sound
source orientation estimation system with snapshots (Exp.
3 in Sec. V-C). Finally, we investigated the relationship
between performance and the number of microphones (Exp.
4 in Sec. V-D).

The BF coefficient dataset was made by measuring im-
pulse responses with a loudspeaker (GENELEC 1029A) and
using Fourier transformation. We fixed the source position to
the center of the room in this experiment. The orientation of
the loudspeaker was rotated from 0◦ to 360◦ with a 15◦

step (total 24 orientations) as shown in 4. The sampling
frequency was 16kHz, the output signal for measurement was
Time Stretched Pulse (TSP) with a length of 214. To exclude
the reflections of the later reverberations from the impulse
responses, we truncated the responses into 1024 points.

Speech data was recorded by an actual male speaker
standing at the same position where the loudspeaker had
been. During the recording, we did not place any noise
sources to make the same condition as the previous report
[7]. However, there was some background noise sources
such as an air-conditioner. SNR changed depending on the
microphone channel, the range of SNR was 15-30dB. The
orientations were 4 directions (0◦, 90◦, 180◦ and 270◦). The
uttered voice used 5 continuous Japanese-language vowels:
”A, I, U, E, O.”

A. Experiment 1: Analysis of each process

First, we evaluated the VAD part. Fig. 6 shows a recorded
voice spectrogram. We found that the voice power was
included in the recorded signal up to 8kHz, in the frequency
range below 500Hz the background noise was dominant,
and there were low level spectrums in the last part of the
voice spectrogram because of room reverberations. Fig. 7
represents its VAD result. We confirmed that the correlation-
based VAD could detect the voice period correctly in spite of
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Fig. 6. Input signal spectrogram

Fig. 7. Voice activity detection result

such noises and reverberations. The reason the time length
detected by VAD was shorter than the strong power period
in the voice spectrogram was that the VAD excluded the
reverberation-dominant area in which the orientation was
estimated inaccurately.

Next, we evaluated the frequency mask process. Fig. 8
shows the maximum BF output, which is used to calculate
the frequency mask as described in Sec. III. By comparing
this figure to Fig. 6, the maximum similarity is emphasized
in the high frequency range (2kHz or higher), oppositely, in
the low frequency (1kHz or lower) deemphasized. To use
the low frequency band for estimation would degrade the
precision because the BF output difference is small in this
band although the SNR is high. Fig. 9 shows the frequency
mask made by the proposed method. Black pixels show the
masked areas. We found that the high frequency area, that
is effective for estimation because of having large BF output
differences, is not masked, oppositely, the low frequency area
is masked.

Fig. 10 shows the BF output histogram using the frequency
mask. The correct orientation is 270◦. We found that the
histogram became the maximum value at 270◦ in almost all
time areas.

B. Experiment2: Evaluation of orientation estimation

To show the effectiveness of our proposed method, we
evaluated the estimation errors of proposed and conventional
systems. Also, to analyze the contribution of the newly
introduced method and processes, we switched the method
and processes:

• Basic estimation method:
OE-BF (Amplitude & Phase) or OE-ABF (Amplitude)

Fig. 8. Maximal value of the BF output in time-frequency domain

Fig. 9. Time-frequency mask

• Time mask (VAD):
Power threshold (Manual VAD) or Correlation based
(Automatic VAD)

• Frequency mask:
Not used or Applied (Frequency mask)

• Histogram:
Not used or Applied (Histogram).

Total 16 systems were tested. The conventional system used
no new method nor processes, and the proposed system used
a new method and three new processes. Fig. 11 shows the
estimation error and its standard deviation of all systems.
Fig. 11(a) is the result with manual VAD, and (b) is with
automatic VAD. In both figures, the dark color bars represent
results based on OE-BF, and the bright color bars are based
on OE-ABF. The left two bars are without frequency masks
nor histogram, next to the left bars are only with a frequency
mask, next to them are only with a histogram, and the right
bars are with a frequency mask and histogram. Compared to
11(a) and (b), we found that the difference of errors between
manual and automatic VAD is small. Therefore, the proposed
VAD could achieve almost the same performance as the
manual VAD without any parameter adjustments. In both
figures, all the dark color bars have larger errors compared
to the bright color bars. This shows that the OE-ABF is the
most important factor to improve the estimation performance
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Fig. 10. BF output histogram for each angle
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(a) Manual VAD (power threshold based)
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(b) Automatic VAD (correlation based)
Fig. 11. Estimation error and standard deviation

in this experiment. Comparing the 4 conditions regarding
frequency mask and histogram in both figures, we found
that the method with the least errors was the method using
both frequency mask and histogram. We made sure that the
frequency mask and histogram processes were both effective
for reducing errors. The errors of conventional and proposed
methods were 29◦ and 4◦, respectively. We achieved a 25◦

error reduction by introducing the new method. Considering
the BF coefficient dataset was prepared using every 15 ◦ step
TFs, the 4◦ error was very small and also regarding standard
deviation 7◦ is considered to be almost the limit value.

(a) Started speaking and walking (b) Moved in front of a door

(c) Changes his orientation to 
go to the center of the room

(d) Reached the center of the 

room

Fig. 12. Snapshots of real-time sound source orientation estimation system
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Fig. 13. Estimation error by number of microphones

C. Experiment3: Snapshots of real-time sound source orien-
tation estimation system

Fig. 12 shows the snaphots of our real-time system when
a person was walking around a room while speaking. The
person started at the corner of the room, moved in front of a
door, and then went to the center of the room. We confirmed
that both localization and orientation were successfully esti-
mated with our system in real-time.

D. Experiment4: Performance by the number of microphones

Fig. 13 shows the estimation error by the number of
microphones used in our proposed method. The 64ch ar-
rangement is the same as the one used in [7], which is made
by removing 4 vertical 8ch microphone arrays from the full
96ch arrangement (Fig. 4). We found that the estimation error
almost tripled. The 56ch arrangement is made by removing 2
horizontal 4ch microphone arrays located on high positions
(z > 2) from 64ch. The error of 56ch system was much
larger than the 64ch system even though it has 8 less chanels.
The 28ch arrangement is made by 1/2 alternative decimation
of 56ch. The error of 28ch is almost 90◦. We found that
both number and arrangement of micrphones is important to
reduce estimation errors.

VI. CONCLUSION

In this paper, we reported a real-time sound source ori-
entation estimation system. This system is based on an
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orientation-extended amplitude beamforming method (OE-
ABF) and we introduce time-frequency mask and temporal
histogram processes to improve the system performance.
Evaluation results showed that the average error of the esti-
mated angles was lower than 5◦, while that of the previously-
reported system was greater than 20◦. Automatically setting
of parameters, reduction in the number of microphones
and further improvements of robustness by associating with
visual information are challenging future work.
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