大音圧で測定したインパルス応答による室内音響特性算出の検討

竹林 涼† 金田 豊‡

* 東京電機大学工学部 〒120-8551 東京都足立区千住旭町 5E-mail: [†]16kmc17@ms.dendai.ac.jp, [‡]kaneda@c.dendai.ac.jp

あらまし インパルス応答を測定する際、大音圧で測定することで環境雑音の影響を小さくし、SN比を向上す ることが可能である。しかし、大音圧で測定するとスピーカなどに非線形歪が発生するという問題がある。そこで 本研究では、測定機器の定格を超え、非線形歪が発生するような大音圧でインパルス応答を測定した場合の、歪の 影響を確認した。非線形歪としては高調波歪と基本波歪が発生するが、Log-SS などの高調波歪を分離できる測定信 号を利用すれば、各種の室内音響特性をほぼ正確に算出できることがわかった。また、大音圧測定において発生す るその他の非線形歪や起こり得る問題についても検討した。

キーワード インパルス応答、高調波歪、大音圧、掃引正弦波信号、スピーカ

Study of room acoustic characteristics calculation from an impulse response measured at high sound pressure

Ryo TAKEBAYASHI[†] Yutaka KANEDA[‡]

[†] Graduate school of Engineering, Tokyo Denki University,

5 Senju-asahi-cho, Adachi-ku, Tokyo, 120-8551 Japan

E-mail: †16kmc17@ms.dendai.ac.jp, ‡kaneda@c.dendai.ac.jp

Abstract When measuring an impulse response, it is possible to reduce the effect of ambient noise by measuring at a high sound pressure. However, the nonlinear distortion of a loudspeaker occurs during measurement at a high sound pressure. In this study, we first measured the nonlinear distortion of an impulse response at a high sound pressure that exceeded the rating of the measuring equipment. Harmonic distortion and fundamental wave distortion were observed as nonlinear distortion. However, we showed that it is possible to calculate room acoustic characteristics while avoiding the effect of distortion by using a signal, such as Log-SS, that can separate harmonic distortion. We also examined the possible problems occurring in measurement at a high sound pressure.

Keywords impulse response, harmonic distortion, high sound pressure, swept sine signal, loudspeaker

1. はじめに

室内インパルス応答はさまざまな室内音響特性量 を導出することができる重要な特性量である。したが って、その測定を高い SN 比で行うことは大変重要で ある。しかし音響インパルス信号は一般にエネルギが 小さく十分な SN 比が得られないため、インパルス応 答の測定には TSP 信号[1]や M 系列信号[2]などのエネ ルギの大きなインパルス応答測定信号が利用されてき た。

また、より高い SN 比を得るために、測定信号長を 長くして信号のエネルギを上昇させたり、適切なスペ クトルを持った信号[3][4]の利用が試みられてきた。し かし、最も簡単な SN 比向上方法は、測定信号を大音 圧(本稿では音響再生機器の定格値付近での再生音圧 を大音圧と定義する)で再生することである。

大音圧再生時の問題点は、スピーカに非線形歪が発 生してインパルス応答に測定誤差が発生することであ る。代表的な非線形歪である高調波歪は掃引正弦波の 1 つである Log-SS 信号[3]を用いれば分離、除去する ことは可能である。しかし、大音圧による測定では、 高調波歪の他に、インパルス応答本体が変形する歪が 発生しており(以降、この歪を「基本波歪」と呼ぶ)、 その影響を評価しておくことが必要である。

本報告では、基本波歪を含んだインパルス応答測定 結果からさまざまな室内音響特性量を算出して大音圧 測定の有用性を検討する。さらに、大音圧測定におい て発生しうる問題点について検討する。

2. インパルス応答測定原理

図1にインパルス応答の測定系を周波数領域で表現 したブロック図を示す.図においてS(k)はインパルス 応答測定用の信号である。ここで、k は離散周波数番 号を表すが、図ではk を省略して表している。また、 H(k)はインパルス応答の等価量である系の周波数特 性を表し、N(k)は環境雑音、1/S(k)は測定信号の逆特 性を表す.測定用信号S(k)を測定対象とする系に入力 すると応答信号H(k)S(k)が出力される.雑音N(k)が無 い場合、この応答信号H(k)S(k)に測定信号の逆特性 1/S(k)をもつフィルタをかけることでH(k)を得るこ とができる.そして、H(k)を逆フーリエ変換すること でインパルス応答が得られる。

しかし現実には環境雑音N(k)が存在し、N(k)/S(k) が測定誤差として付加される。この誤差項はS(k)のス ペクトルを適切に設定することでも低減することがで きる[5]が、最も簡単にはS(k)全体を増大する、すなわ ち大音圧測定で低減することができる。

3. 掃引正弦波の測定結果に含まれる非線形歪

大音圧で測定信号を再生するとスピーカには非線 形歪が発生する。入力が掃引正弦波の場合、入力周波 数の整数倍の周波数の高調波歪、および入力正弦波の 振幅・位相が、系が線形の場合と比べて変形する基本波 歪、の2種類の歪が発生する(図 2)。

図3にLog-SS信号を用いて測定した結果を示す。 高調波歪の影響は、インパルス応答本体とは時間軸上 で分離された、パルス状の波形として現れる[3]。この 歪は時間軸上で容易に除去できることが理解できる。 一方、基本波歪は、図4に示すようにインパルス応答 本体の変形(波形全体の振幅縮小と変形)として影響 する。

図5にこれらの非線形歪の影響による誤差の大きさ を測定した結果[6]を示す。図において横軸は1m地点 でのスピーカの再生音圧を表し、縦軸はインパルス応 答のエネルギで正規化した非線形誤差のエネルギを表 す。□印は2次高調波歪による誤差、△印は3次高調 波による誤差を表しており(ただし、65dB以下は雑音 による影響で上昇)、音圧95dBで約-35dBとなってい る。一方、○印は基本波応答誤差で、最大約-13dBと、 高調波歪と比べて20dB以上も大きい誤差となってい る。

この基本波歪は入力周波数と同じ周波数の振幅低 下であるので聴覚的には影響は小さいため、従来は高 調波歪に比べて無視されることも多かった。しかし、 基本波歪は高調波歪のように分離、除去することはで きず、インパルス応答本体に大きな誤差量として含ま れるため、室内音響特性算出に及ぼす影響を評価して おく必要がある。

4. 対象とする室内音響特性

本報告では以下の室内音響特性を対象とした。ただし*h(t)*はインパルス応答を表す

- ① 残響時間 $T_{30}[s]$:次式の残響曲線 $r(\tau)$ の-5~-35dB の傾きから求める 60dB 減衰するのに要する時間 $r(\tau) = \int_{-}^{\infty} h^{2}(t) dt / \int_{0}^{\infty} h^{2}(t) dt$
- 2 $C80 = 10 \log \left(\int_0^{80ms} h^2(t) dt / \int_{80ms}^{\infty} h^2(t) dt \right) [dB]$

3
$$D50 = \int_0^{50ms} h^2(t) dt / \int_0^\infty h^2(t) dt$$

- ④ $Ts = \int_0^\infty t \times h^2(t) dt / \int_0^\infty h^2(t) dt$ [s] (時間重心)
- ⑤ EDT[s]:残響曲線の 0dB から-10dB の傾きから求め る残響時間
- 6 MTF : $m(F) = |\int_0^\infty h^2(t) e^{-j2\pi Ft} dt | / \int_0^\infty h^2(t) dt$

5. 大音圧での室内音響特性の測定

5.1. 残響曲線とインパルス応答開始点の測定

前章で示した室内音響特性を算出するには、それら 定義式に含まれる、残響曲線 r(t)の計算およびインパ ルス応答の開始点(定義式において t = 0 とする点。以 下、「開始点」と呼ぶ)の検出の正確性が重要だと考え られる。よって、実際に室内音響特性を算出する前に、 大音圧による測定がこれらの量に与える影響を検討し た。

測定条件を表1に示す。測定点はスピーカマイク間 距離を3種類に変更した3箇所で行った。この条件の 下、大音圧(1m地点の音圧 110dB)と非大音圧(1m 地点の音圧 70dB)でインパルス応答を測定した。そ して、測定されたインパルス応答から求めたオクター ブバンドの残響曲線を図6に示す。

図より、どの周波数帯域においても実線で書かれた 非大音圧の測定結果と破線で書かれた大音圧の測定結 果がほぼ一致している(図の白黒印刷では重なって区 別がつかない)ことがわかる。この結果は測定点 C で の結果であるが、他の測定点でも同様の結果が得られ た。このことから、大音圧でインパルス応答を測定す ることによって起きるインパルス応答の変形は残響曲 線を求める際には影響を及ぼさないことがわかる。

次に、インパルス応答の開始点を検出した。本報告 では、図7に示すように、インパルス応答の時間前方 からインパルス応答方向に見て、最初に振幅の絶対値 が最大値から-20dBの値となった点を開始点とした[7]。

3つの測定点で、非大音圧および大音圧で測定した インパルス応答に対して検出した開始点を、表2に示 す。単位はサンプル(1/48 ms)である。どの測定点の結 果も開始点はほぼ一致している。大音圧測定では基本 波歪の影響でインパルス応答は変形するが、図4のよ うに、インパルス応答先頭部分はほぼ比例的に振幅が 減少していることが、開始点に影響を与えない要因と 考えられる。このように大音圧でインパルス応答を測 定しても、開始点は正しく検出できることがわかった。

5.2. 室内音響特性の測定

以上より、大音圧で測定することによってインパル ス応答が非線形歪の影響で劣化していても、室内音響 特性を求める際に重要である残響曲線の計算およびイ ンパルス応答の開始点の検出はほぼ正しく行えること がわかった。よって、室内音響特性も正しく算出でき ると考えられる。

まず、図6の残響曲線が一致していることから、残 響曲線に関しては大音圧でも正しく測定できることが わかる、また、測定点CにおけるC80、D50、Ts、EDT、 MTFをインパルス応答から算出した結果を図8に示し た。また、大音圧測定時と非大音圧測定時の誤差、お よび各特性量のJND(聴覚の検知限)を表3に示した。 大音圧と非大音圧での結果はほぼ一致しており、その 誤差はJNDの範囲内にも収まっている。その他の測定 点でも同様の結果が得られた。

図5 再生音圧と基本波歪および高調波歪の関係

表 1 測定条件

実験室寸法	9.1 ×6.3 × 2.8 m	
サンプリング周 波数	48kHz	
残響時間	約 1.2 秒	
使用スピーカ	BOSE 101MM	
	口径 11.5cm フルレンジスピーカ	
使用アンプ	B&K Type2734	
	1m(測定点 A)	
スピーカマイク間 距離	2m(測定点 B)	
	3m(測定点 C)	
使用信号	Log-SS 信号	

5.3. スピーカの影響の検討

インパルス応答の非線形歪の主要因はスピーカの 非線形特性によるものである。そこで、異なるスピー カを用いても大音圧測定の有効性が得られるかどうか を検証した。使用したスピーカは、以下の2つである。

1) VICTOR SX-WD30 口径 9cm フルレンジ

2) TANNOY SYSTEM600 口径 16.5cm 同軸 2way

大音圧測定時と非大音圧測定時との室内音響特性 の誤差を表4、5に示す。表4はVICTOR SX-WD30の 結果、表5はTANNOY SYSTEM600の結果を示す。こ れらより、すべての室内音響特性の誤差量はJNDの範 囲内にも収まっていることがわかる。このように、異 なる非線形特性を持つ異なるスピーカを用いた場合で も、同様に大音圧測定の有効性が検証できた。

図7 開始点の検出方法

表 2 開始点の測定結

測定音圧	測定点 A	測定点 B	測定点 C
非大音圧	3804	3927	4076
大音圧	3804	3927	4077

図8 測定点Cにおける室内音響特性測定結果

表3 測定点Cにおける各種室内音響特性の誤差量とJND (BOSE 101MM)

	$125 \mathrm{Hz}$	$250 \mathrm{Hz}$	$500 \mathrm{Hz}$	1000Hz	2000Hz	4000Hz	JND
C80(dB)	0.06	0.1	0.15	0.34	0.15	0.18	1
D50	0.005	0.005	0.002	0.02	0.013	0.007	0.05
Ts(ms)	2.2	0.9	1	2.1	2.5	0.9	10
EDT(%)	0.7	0.2	2.2	0.4	3	1.8	5

表 4 測定点 C における各種室内音響特性の誤差量と JND (VICTOR SX-WD30)

	125Hz	250Hz	500Hz	1000Hz	2000Hz	4000Hz	JND
C80(dB)	0.73	0.2	0.19	0.02	0.12	0.18	1
D50	0.046	0.001	0.003	0.005	0.003	0.024	0.05
Ts(ms)	5.1	0.6	0.6	0.8	0.4	1.3	10
EDT(%)	0.3	0.7	0.5	1.4	0.3	0.7	5

表 5 測定点 C における各種室内音響特性の誤差量と JND (TANNOY SYSTEM600)

	125Hz	250Hz	500Hz	1000Hz	2000Hz	4000Hz	JND
C80(dB)	0.25	0.21	0.03	0.01	0.08	0.03	1
D50	0.016	0.023	0.006	0.001	0.006	0	0.05
Ts(ms)	3.2	1.8	0.4	0.1	0.7	0.1	10
EDT(%)	4.6	0.2	0.4	0.1	0.3	0.2	5

6. 大音圧測定で問題となる歪

前章まででは入力が掃引正弦波のみであることを 前提としてきた。掃引正弦波は単一時刻で見ると単一 周波数の正弦波であるので、その非線形誤差は高調波 歪と基本波歪のみとなる。しかし、条件によっては掃 引正弦波以外の不要信号がスピーカに入力される場合 がある。代表例として電源雑音(ハム)があげられる。 そして、例えば2つの周波数の正弦波が非線形系に入 力されたときには、それぞれの周波数 f1、f2の整数倍 の和と差の周波数 nf1±mf2 (n,m:整数)の成分をもつ 混変調歪が発生する。

Log-SS を用いた場合に現れる混変調歪のモデル図 を図9に示す[8]。図は得られたインパルス応答のスペ クトログラムで、横軸は時間、縦軸は周波数を表して いる。時刻τ₀に存在する垂直方向の直線がインパルス 応答を表す。実際には各周波数成分の応答が図の右側 に広がっている。また、インパルス応答の左右の曲線 が混変調歪である。

Log-SS を用いた場合の混変調歪の特徴としては、1) インパルス応答の時間前方(図の左側)だけでなく時間 後方(図の右側)にも発生する、2)低周波数成分ほど主 応答から時間的に離れた位置に現れる、の2つが挙げ られる。よって、低周波数帯域においてはこの混変調 歪の影響が大きく、特性に異常が発生しやすいと考え られる。

図 10 に実際の室内で混変調 金が発生したときのインパルス応答のスペクトログラムを示す。測定条件は表6に示した。(a)の非大音圧時においては混変調 歪成分を確認することはできないが、(b)の大音圧時においては混変調 歪成分が確認できる。時間前方にある歪は分離可能であり、また、時間後方の高周波部分はイン

図9 Log-SS を用いた場合の混変調歪のモデル図

パルス応答の残響部分に埋もれており影響は小さいと 考えられる。しかし、時間後方の低周波部分には混変 調歪が明確であり、残響曲線への影響が予想される。

それぞれのインパルス応答から求めた残響曲線を 図 11 に示す。図より、125Hz や 250Hz 帯域の低周波 数帯域の残響曲線では大音圧測定時の残響曲線のレベ ルが上昇している。これは、混変調歪の影響が表れて いると考えられる。

7.まとめ

インパルス応答を大音圧で測定すると高い SN 比が 得られるが、非線形歪による測定誤差が発生する。本 報告では、インパルス応答を用いて室内音響特性を算 出する場合に、この測定誤差が及ぼす影響について評 価した。その結果、音響再生機器の出力限界近くの大 音圧で室内音響特性を測定しても代表的な室内音響特 性は JND 以下の誤差で測定できることがわかり、大音 圧測定の有用性が示された。ただし、電源雑音等、測 定信号とは別の信号が再生系に同時に入力された場合 には、測定信号との混変調歪によって残響曲線が変形 する場合があるので注意が必要である。

図 10 Log-SS を用いたインパルス応答 測定時に発生した混変調歪

表 6 測)	定条件
--------	-----

実験室寸法	$6.2\!\times\!7.1\!\times\!2.8~m$
残響時間	約 0.5 秒
スピーカ	BOSE 101MM
アンプ	BOSE 1705- II
サンプリング周波数	48kHz
使用信号	Log-SS 信号

文 献

- Y. Suzuki, F. Asano, H. Y. Kim, and T. Sone, "An Optimum computer-generated pulse signal suitable for the measurement of very long impulse responses," J. Acoust. Soc. Am., 97(2), pp. 1119-1123, 1995.
- [2] J. Borish, "An efficient algorithm for measuring the impulse response using pseudorandom noise," J. Audio Eng. Soc., vol. 31, no. 7/8, pp. 478-488 (1983 July/Aug.).
- [3] A. Farina, "Simultaneous measurement of impulse response and distortion with a swept-sine technique," in *108th AES Convention*, 5093, (D-4) (2000 Feb.).
- [4] 守谷直也, 金田豊, "雑音に起因する誤差を最小 化するインパルス応答測定信号," 日本音響学会 誌, 64, 12, pp. 695-701 2008.
- [5] Y. Kaneda, "Noise Reduction Performance of Various Signals for Impulse Response Measurement," Journal of the Audio Engineering Society, 63, 5, pp. 348-357, May 2015.
- [6] 佐々木長閑,金田豊,"インパルス応答に及ぼすス ピーカの非線形歪の影響"音響学会秋季講演論 文集, pp.761-762 2013.
- [7] ISO 3382-1:2009.
- [8] 佐藤 憲孝,金田豊, "掃引正弦波を用いたインパルス応答測定時に発生する非線形誤差の検討," 電子情報通信学会応用音響研究会資料, EA2015-35 (2015/11).

謝辞

本研究の一部は JSPS 科研費 15H02728 の助成を受 けたものです。

