
IEEE TRANSACTIONS ON ACOUSTICS. SPEECH, AND SIGNAL PROCESSING, VOL. 36, NO. 2, FEBRUARY 1988 145 

Inverse Filtering of Room Acoustics 

Abstract-A novel method is proposed for realizing exact inverse fil- 
tering of acoustic impulse responses in a room. This method is based 
on the principle called the multiple-inputloutput inverse theorem 
(MINT). Because a room impulse response generally has nonminimum 
phases, it has been impossible to realize exact inverse filtering of room 
acoustics using previously reported methods. However, the exact in- 
verse of room acoustics can be realized using the proposed method. 
With this method, the inverse is constructed from multiple FIR filters 
(transversal filters) by adding some extra acoustic signal-transmission 
channels produced by multiple loudspeakers or microphones. The coef- 
ficients of these FIR filters can be computed by the well-known rules 
of matrix algebra. Inverse filtering in a sound field is investigated ex- 
perimentally. It is shown that the proposed method is greatly superior 
to previous methods that use only one acoustic signal-transmission 
channel. The results in this paper prove the possibility of sound repro- 
duction and sound receiving without any distortion caused by reflected 
sounds in a room. 

I. INTRODUCTION 

ENERALLY, acoustic signals radiated inside a room G are linearly distorted by wall reflections. These dis- 
tortions, which arise as results of reverberations and 
echos, often spoil speech intelligibility. In addition, they 
are also undesirable when reproducing a desired sound 
field in a room. The way of removing these distortions is 
to realize the inverse of a room impulse response. There- 
fore, there is an unfulfilled need for an inverse-filtering 
method intended for room acoustics. 

Consider the acoustic system consisting of loudspeaker 
SI and microphone M ,  as shown in Fig. 1. The transfer 
function of the acoustic signal-transmission channel be- 
tween S ,  and M is denoted as G(z-’). G(z-’) represents 
the reflective sounds as well as the direct sound between 
SI and M. 

It would appear that the inverse of this system could be 
constructed from the inverse filter H ( z - ’  ) that satisfies 
the following expression: 

H(z-’) = l /G(z- ’ ) .  (1) 
However, this inverse becomes unstable because the 
acoustic signal-transmission channel G (  z-’ ) is generally 
considered to be a nonminimum phase function [l] .  

A number of inverse-filtering methods [2]-[5] have 
been reported. However, they cannot realize the exact in- 
verse of an acoustic system that has nonminimum phases. 
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Fig. 1. Acoustic system consisting of a loudspeaker and a microphone. S,: 
loudspeaker, M: microphone, G(z- ’ ) :  acoustic signal-transmission 
channel that corresponds to a room impulse response. 

Most of them are based on the “least squares error (LSE)” 
criterion [2]-[4]. According to these conventional meth- 
ods (LSE methods), the inverse of an acoustic system can 
be constructed from a stable FIR filter (transversal filter). 
However, this “inverse” is not the exact inverse but 
rather an approximate inverse of the system. 

In this paper, a novel method is proposed for realizing 
exact inverse filtering of an acoustic system. In this 
method, an acoustic system is considered to be a multiple- 
input (or multiple-output) linear finite impulse response 
(FIR) system by using multiple loudspeakers (or micro- 
phones). This concept is not found in the conventional 
LSE method that uses only one acoustic signal-transmis- 
sion channel. 

The outline of this paper is as follows. Section I1 re- 
views the conventional LSE method for achieving inverse 
filtering of a nonminimum phase system. Section I11 de- 
scribes the principle of the proposed method called the 
MINT. Section IV introduces a method for computing the 
inverse of a linear FIR system based on the MINT. Sec- 
tion V discusses an inverse-filtering experiment in a sound 
field. Also, the performance of the proposed method and 
the LSE method are compared. 

11. REVIEW OF CONVENTIONAL INVERSE-FILTERING 
METHOD 

Consider the single-input single-output linear FIR sys- 
tem shown in Fig. 2. The impulse response of the system, 
g ( k ) ,  is assumed to have nonminimum phases, where k 
is a nonnegative integer index. The FIR filter is connected 
to the input of the system and its coefficients are denoted 
as h ( k ) .  

When the filter is the inverse of the system, g ( k )  and 
h ( k )  must satisfy the relationship 
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Fig. 2. Conventional inverse-filtering method based on the least squares 
error criterion (LSE method). 

where 

d ( k )  = 
when k = 0 

when k = 1 ,  2 ,  - - - . 
and 0 denotes the discrete linear convolution. Equation 
(2) can be expressed in matrix form as 

D = GH, (3b) 

L = i + m ,  (4) 

m: order of the z-transform of g (k) ,  
i: order of the FIR filter, 
D: ( L  + 1 )  X 1 column vector, 
H ( i  + 1 )  x 1 column vector, 

and 

G: ( L  + 1 )  x ( i  + 1)matrix. 

Here, there is no solution for (3) because the number of 
the columns is less than that of the rows in matrix G, as 
shown in the expression 

L +  1 = m + i +  1 > i + l .  ( 5 )  

In the conventional LSE method, the coefficients of the 
FIR filter are computed as the approximate solution of (3) 
by the relationship 

H = ( G*G)-'G*D, (6) 

where GT is the transposed matrix of G. Therefore, it is 
impossible to realize the exact inverse of a linear FIR sys- 
tem using this method. 

In addition, no matter how high the order of the inverse 

filter might be, error energy ( D  - GH ) T (  D - GH ) does 
not converge to 0, since g ( k )  has nonminimum phases 
(see Appendix A). Accordingly, the "inverse-filter" ob- 
tained by the conventional LSE method cannot accurately 
approximate the "inverse" of a nonminimum phase sys- 
tem. 

111. PRINCIPLE OF PROPOSED INVERSE-FILTERING 
METHOD 

A.  Fundamental Principle 

The drawback in the conventional LSE method seems 
to result from the use of only one signal-transmission 
channel. However, many systems in room acoustics, some 
electric circuits, and so on can be modified to multiple- 
input linear FIR systems by adding some extra signal- 
transmission channels. In these cases, the exact inverse 
of the system can be constructed by applying the principle 
[6] introduced in this section. 

Consider the two-input single-output linear FIR system 
shown in Fig. 3. This system can be obtained by adding 
an extra signal-transmission channel to the linear system 
shown in Fig. 2. The two signal-transmission channels of 
this system are denoted as GI (z- ' ) and G2 ( z -  ' ), and the 
two FIR filters HI (z-' ) and H2 (z-' ) are connected to the 
inputs of Gl(z- ' )  and G2(z- ') .  

To realize inverse filtering of the system, H ,  ( z - ' )  and 
H2 (z-' ) must satisfy the expression 

D(z- ')  = 1 = Gl(2-l) H ~ ( Z - ' )  + G ~ ( z - ' )  H ~ ( z - ' ) ,  

(7 )  
where 

D ( z - ' ) :  z-transform of d ( k )  in (2). 

Since Gl(z- ') ,  G2(z- ') ,Hl(z- ') ,  andH2(z-')arepoly- 
nomials of z-', a solution set for (7), (Hl (z- ' ) ,  
H2(z-')), has the following two properties. 

a) Solutions for (7) exist when and only when 
GI(z- ' )  and G2(zP1)  are relatively prime (in 
other words, Gl(z- ' )  and G2(z- ')  do not have 
any common zero in the z-plane). 

b) When (7) has a solution, it is unique under the 
requirement that the orders of HI (2-I) and 
H2(zP1)  are less than those of G2(zP1)  and 
GI (z-' ), respectively. 

Therefore, there exists a pair of FIR filters, Hl (z-' ) and 
H2(z-'), that can realize exact inverse filtering of a two- 
input single-output linear FIR system (The proof of the 
properties is shown in Appendix B.) 

This principle can be applied to sound reproduction in 
a sound field in a room. Consider the acoustic system 
shown in Fig. 4. In this figure, GI (z- ' )  and G2(z- ')  rep- 
resent the acoustic signal-transmission channels between 
loudspeakers SI, S2 and receiving point M. The acoustic 
signals radiated from SI and S2 are superposed at M after 
passing through GI ( z - ' )  and G2(z-I). 
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Fig. 3.  Proposed inverse-filtering method based on the multiple-input/out- 
put inverse theorem (MINT). 

x ( k ) =  y ( k )  

Fig. 4. Sound reproduction using the proposed method. SI, S,: loud- 
speaker, M :  sound receiving point, G,(z-'), Gz(z-I): acoustic signal- 
transmission channel. 

When G1 ( z -  I ) and G2 ( z -  ' ) do not have any common 
zero, there exist FIR filters H1 (z- '  ) and H2 (z- '  ) that sat- 
isfy the relationship in (7). Hence, exact inverse filtering 
is realized by connecting H I  ( z - I  ) and H2 ( z - '  ) to the in- 
puts of S1 and s,, respectively. Therefore, it becomes pos- 
sible to reproduce the desired acoustic signals at M with- 
out any distortion caused by wall reflections using the 
proposed principle. 

It is also possible to apply the principle to a single-input 
two-output linear FIR system for reconstructing the input 
signals of the system. A block diagram of the system is 
illustrated in Fig. 5 .  The system's two signal-transmis- 
sion channels are denoted as Ul(z-') and U 2 ( z - ' ) .  Two 
FIR filters VI (2-') and V , ( z - l )  are assumed to be con- 
nected to the outputs of Ul(z- ' )  and U 2 ( z - ' ) ,  respec- 
tively. 

To reconstruct the input signal of the system, V ,  (2-' ) 
and V2 ( z - '  ) must satisfy the expression 

1 = Ul(z-') Vl(z- ' )  + U 2 ( z - ' )  V 2 ( 2 - ' ) .  ( 8 )  

This equation is identical with (7). Hence, the same prin- 
ciple mentioned above can be applied to prove the exis- 
tence of FIR filters V l ( z - ' )  and V 2 ( z - ' ) .  Accordingly, 
the principle is applicable to reconstruction of the input 
signal of a single-input two-output linear FIR system from 
its output signals. 

In room acoustics, this concept is useful for a micro- 
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Fig. 5 .  Proposed inverse-filtering method applied to a single-input two- 
output system. 
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x ( k )  = y ( k )  

Fig. 6.  Dereverberation using the proposed method. S: sound-source, MI,  
Mz:  microphone, U, ( z - I ) ,  U2(z-I): acoustic signal-transmission chan- 
nel. 

phone system to dereverberate the acoustic signals re- 
ceived inside a room. Consider the acoustic system shown 
in Fig. 6. U ,  ( z - ' )  and U 2 ( 2 - ' )  denote the acoustic sig- 
nal-transmission channels from sound source S to micro- 
phones M1 and M 2 ,  respectively. The acoustic signals ra- 
diated from S are received by microphones MI and M2. 
Then, output signals from MI and M2 are summed in the 
adder. 

This system can be considered to be equivalent to the 
single-input two-output linear FIR system mentioned be- 
fore. Hence, the output signals of the adder and the direct 
sound from S become the same by using FIR filters 
Vl(z- ')  and V,(Z- ' )  that satisfy (8). Therefore, there is 
a strong possibility that the proposed principle can be ap- 
plied to a method for dereverberation on the acoustic sig- 
nals received by multiple microphones inside a room. 

B. Extension of the Principle 

Here, the above-mentioned principle is extended for in- 
verting a multiple-input multiple-output linear FIR sys- 
tem. In order to create the desired sound field, a concept 
seems to be necessary to cancel the effects of room im- 
pulse responses at multiple points in a room. This concept 
is also useful for realizing an effect similar to the "Cock- 
tail Party Effect" with a microphone system. Hence, it 
appears important to extend the proposed principle. 
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Consider the n + 1-input n-output ( n  = 2, 3,  
e )  

system shown in Fig. 7. In this figure, Gu ( z-' ) ( i = 1, 
2, * * , n + 1 ; j  = 1, 2, - - - , n ) is denoted as a signal- 
transmission channel between the ith input and the jth out- 
put of the system. Hu (z- ' )  denotes an FIR filter con- 
nected to the ith input of the system. 

Inverse filtering of the jth output of the system can be 
defined by the expression 

9 

where 

R j :  n x 1 column vector, 
G: n x ( n  + 1) matrix such as 

G = [GI G2 - - - Gn+l 1 > 

where Gi ( i  = 1, 2, 
vector in matrix G, and 

- - , n + 1) denotes the ith column 

H j :  
Equation (9) has the following meaning. 

1) Thejth output of the system can be inverted using 
FIR filters Hu (z-') ( i  = 1, 2, , n + 1) indepen- 
dently of the other outputs. 

2) Solutions for (9) Hu ( z-') exist when the Smith ca- 
nonical form [7] of G can be represented as matrix [ I n  01, 
where In denotes the n X n unit matrix and 0 is an n x 1 
column vector with all zero elements (see Appendix C). 

Accordingly, it is possible to realize the exact inverse 
of a multiple-input multiple-output linear FIR system by 
the proposed principle called MINT. 

(n X 1 )  X 1 column vector. 

IV. COMPUTATION OF FIR FILTERS FOR EXACT 
INVERSE 

This section describes the computation of the FIR filters 
introduced in the previous section. To simplify the expla- 
nation, inverse filtering of the two-input single-output 
system shown in Fig. 3 is considered. 

SYSTEM- INPUT SYSTEM-OUTPUT 

(k) 

I------- -------- 
EXACT INVERSE n+ l - INPUT n-OUTPUT FIR SYSTEM 

USING MINT 

x(k) = y(k) 
Fig. 7.  Proposed inverse-filtering method for a multiple-input multiple- 

output system. 

Equation (7) can be rewritten as 

4 k )  = g l ( k )  @ hl(k) + g 2 W  @ hZ(% (10) 
where 

gl ( k ) ,  g2 ( k ) :  impulse responses of GI ( z - ' )  and 

h , ( k ) ,  h 2 ( k ) :  coefficients of H l ( z - ' )  and H 2 ( z - I ) .  
G2( 2 - 1 , 

This equation can be expressed in matrix form as 

1 0 , , 101 

t 
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where 

L = m + i = n + j ,  (12 )  
and 

n? + 1, n + 1: durations of gl (k)  and g z ( k ) ,  
i, j: orders of H1(z-') and H ~ ( z - l ) ,  
D: ( L  + 1 )  x 1 column vector, 
[ H T  ~ 3 ~ :  ( i  + j + 2 )  x 1 column vector, 

and 

[Gl G I :  ( L  + 1 )  X ( i  + j + 2 )  matrix. 

Here, [ G1 G, J becomes a square matrix when orders i and 
j of two FIR filters are chosen to satisfy the equalities 

i = n - 1  

and 

j = m - 1 .  (13) 
[ G1 G,] is a regular matrix because there exists a unique 
set of FIR filters that satisfies (10) and property b) de- 
scribed in Section 111-A. Accordingly, the coefficients of 
the FIR filters, hl (k) ,  h , ( k ) ,  can be computed by the re- 
lationship 

= [Gl Gz]-'D. 

V. INVERSE-FILTERING EXPERIMENT IN A SOUND FIELD 

In room acoustics, it has always been believed that there 
could be no method for removing the distortions caused 
by wall reflections. This is because a room impulse re- 
sponse is generally considered to have nonminimum 
phases. However, a sound field can be considered to be a 
multiple-input (or multiple-output) linear FIR system by 
employing multiple loudspeakers (or microphones). 
Hence, the proposed inverse-filtering method can be ap- 
plied to that problem, when two room impulse responses 
do not have any common zero. 

According to computer simulations using a sound field 
in a rectangular enclosure [8], the proposed method per- 
formed inverse filtering with sufficient accuracy by avoid- 
ing some symmetrical positions of sound sources and re- 
ceiving points. Although more studies are necessary to 
foresee the possibility of a common zero between two 
room impulse responses, we believe that the method can 
be applied to most loudspeaker-microphone positions in 
any room except some symmetrical positions. 

To verify the applicability of the proposed method to a 
sound field, an inverse-filtering experiment was con- 
ducted in the frequency band 315-3150 Hz. The conven- 
tional LSE method was also applied to this problem in 
order to highlight the difference between the proposed in- 
verse-filtering method and the LSE method. 

The experimental conditions are shown in Fig. 8. Two 
reflectors were placed in an L-shaped arrangement in an 
anechoic room. Another reflector was also placed on the 

S 2 B  I 
I DIGITAL b p k  OUTPUT 

k-4 COMPUTER 

l m  - 
Fig. 8. Experimental conditions for inverse filtering in a sound field. SI, 

S,: loudspeaker, M: microphone, BPF: band-pass filter intended for 315- 
3150 Hz. The number of taps of FIR filter H , ( z - ' )  ( i  = 1 or 2 )  in the 
LSE method is 700, and that of H , ( z - ' )  in the proposed method is 350. 

floor. Microphone M was placed 1 m from loudspeakers 
S1 and S,. The output of M was fed through a band-pass 
filter (BPF), intended for the frequency band 315-3150 
Hz, to a digital computer that was used for computing the 
coefficients of the FIR filters H 1  ( z - ' )  and H2(z- ') .  The 
acoustic signal transmission channel between SI and M 
(including S1 and M )  is denoted as Gl (z- ' ) ,  and that 
between S, and M is denoted as G2 (z-' ). 

In this experiment, the desired impulse response D (z- ) 
[see (7)] was arranged as the impulse response of the BPF. 
The errors, E,(z-') and Ei (z- ' )  ( i  = 1 or 2 ) ,  between 
D (z- ) and the impulse responses caused by the proposed 
inverse-filtering method and the LSE method were com- 
pared. E,(Z-') and Ei (z-') are represented by the 
expressions 

E,(z-') = D(z- ')  - { Gl(2-l) Hl(2-l) 

+ Gz(z-') Hz(z- ' ) ) ,  ( 1 5 4  

where 

H1 ( z - ' )  ayd 
H, (z- ): 

Hi (z-') 

the FIR filters constructed by the pro- 
posed method, 

( i  = 1 , 2 ) :  the FIR filter constructed by the LSE 
method when signal-transmission 
channel Gi (z-') is considered. 

The results of this experiment are shown in Fig. 9. 
Here, curves (a), (b), (c), and (d) show the power spectra 
of D(z- ') ,  E1(z- ' ) ,  E2(z- l ) ,  and Em(z- ' ) ,  respec- 
tively. From these results, the following conclusions can 
be drawn. 

The difference between curves (a) and (b) shows that 
the performance of the LSE method is deeply influenced 
by the nature of the acoustic signal-transmission channel 
in use. 

The error using the proposed method is about 40 dB 
less than the error obtained by the LSE method at almost 
all frequencies. 

Authorized licensed use limited to: TOKYO DENKI UNIVERSITY. Downloaded on June 07,2010 at 01:26:48 UTC from IEEE Xplore.  Restrictions apply. 



150 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH. AND SIGNAL PROCESSING, VOL. 36, NO. 2, FEBRUARY 1988 

20 1 

-120 , , I 

0 1 2 3 

FREOUENCY [kHz1 

Fig. 9. Power spectra of errors in the LSE method and the proposed in- 
verse-filtering method under the conditions shown in Fig. 8: (a) desired 
response, (b) and (c) error in the LSE method, (d) error in the proposed 
method [see (I  5 ) ] .  

The error in the proposed method is thought to be due 
to the accuracy limits of the digital computer used in this 
experiment. Even with this error, the proposed method 
has been shown to be vastly superior to the LSE method 
to inverse filtering of room acoustics. 

VI. CONCLUSION 
An inverse-filtering method has been proposed for 

achieving the exact inverse of room acoustics that have 
nonminimum phases. This method is based on the prin- 
ciple called MINT. According to this principle, the in- 
verse is realized using multiple FIR filters and multiple 
loudspeakers (or microphones). Coefficients of the filters 
can easily be determined by the well-known rules of ma- 
trix algebra as described in Section IV. The inverse real- 
ized by the proposed method is useful in removing any 
distortion due to wall reflections. 

An experiment was conducted for realizing inverse fil- 
tering at a point in a sound field. This experiment clarified 
that the proposed method is vastly superior to a conven- 
tional method that uses only one acoustic signal-transmis- 
sion channel. 

We expect that the method will become a powerful one 
for producing the desired sound field in a room as well as 
dereverberating the acoustic signals radiated inside a 
room. 

APPENDIX A 
Consider the inverse filter of a minimum phase function 

such as 

g ( P )  = go + g1 z-1 + * * + gn-1z-(n-l). 

(A1 ) 
Since g ( z - I )  is a minimum phase, the following rela- 
tionship is satisfied: 

('42) 2 2  
go > g n - 1 .  

When the inverse filter of g ( z - ' )  is computed with the 
LSE method [see ( 6 ) ] ,  the error energy e: caused by it 
can be represented as 

e: = D,'Dk - D l  Gk (G:Gk)-I GLDk 

= 1 - g;D;(G:Gk)-I&, ('43) 

where ( k  - 1 ) denotes the order of the inverse filter and 
Dk denotes k x 1 column vector [ 1 o - 01 '. Gk is ( k  

0 like matrix G in (3). If k is greater than n ,  it is possible 
to rewrite this equation to the expression 

e: = 1 - g ;  - det (GkT-l G,_,)/det (GIGk).  (A4) 
'The inverse of a minimum phase function can be con- 

structed from an infinite impulse response (IIR) filter. 
Hence, the impulse response of the inverse filter of g (z-I ) 
computed with the LSE method converges to the impulse 
response of the IIR inverse of g(z-') as k increases in 
number. Therefore, the following relationship holds well: 

+ n - 1)  X k matrix composed of go, g , ,  * 3 gn - I and 

lim (e:} = lim 11 - g;  * det (GkT-lGk-l)/ 
k + w  k + m  

det (G:Gk) ] 
= 0. ( '45)  

:. lim {det (G;-,Gk-,)/det (GkTGk)} = l / g& 
k +  m 

(A6) 
Next, consider the inverse of the maximum phase func- 

tion, 

g ( z - ' )  = gnPl + gn-2z-1 + - * (A7) 

This function can be formed by reflecting outside the unit 
circle all zeros of g(z- ' )  that are inside the unit circle in 
the z-plane, keeping the magnitude of g ( z - ' )  the same 

The error energy caused by the "inverse" of g ( z - I )  

+ g0z-("-'). 

[91. 

can be represented as 

2: = 1 - g;-lD:( G:Gk)-'D, 

= 1 - g2-1 * det (G;klGk-I)/det (GlGk), 

where 

Gk = 
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It is clear that det ( GkT_ Gk- )/det ( G;kTGk ) is identical 
to det (GkT_lGk-I)/det (GtGk) in (A4). Therefore, the 
following relationship can be shown by considering (A2): 

lim ( S i }  = lim { 1 - g i p 1  * det ( G l - l G k - l ) /  

This, however, contradicts the assumption. Therefore, 
there exists only one solution for (7) that satisfies rela- 
tionship (A1 1). 

APPENDIX C 

R, = [GI  G2 * . *  G,,] [ - e -  ] k + m  k + o o  

H1j (z-' ) 
det ( GkTGk ) } 

- 
- 1 - s t - l / d  

HnJ (z-' ) 
# 0. 

+ Gn+ I Hn + 
049)  (A14a) 

A nonminimum phase function can be represented as 
the product of a minimum phase function by a maximum 
phase function. As mentioned above, the error energy 
caused by the "inverse" of the maximum phase function 

or 

Rj = GnHnj + Gn+1Hn+Ij(z-l), ( ~ 1 4 b )  

where 
does not converge to 0. Therefore, in the LSE method no 
matter how high the order of the inverse filter might be, 
the error energy does not converge to 0 when a nonmini- 
mum phase function is considered. 

APPENDIX B 

According to the characteristics of the Euclidean algo- 
rithm [lo], it can be ascertained that there exists a gensral 
solution set for (7) ( f i 1 ( z - ' ) ,  f i 2 ( z P 1 ) )  that satisfies the 
expressions 

f i 1 ( z - ' )  = Hl(z- ' )  + G ~ ( z - ' )  K ( z - ' ) ,  

and 

w - '  2 z ) - - H ~ ( z - ' )  - G ~ ( z - ' )  K ( z - ' ) ,  (A101 

and 

deg Hl(z - ' )  < deg G ~ ( z - ' ) ,  

and 

deg H2(z-')  < deg G I ( z - ' ) ,  ( A l l )  

G,, : 
Hnj : 
[G,, G n + l ] :  matrix G i n  (9). 

n X n polynomial matrix, 
n X 1 column vector, 

When the Smith canonical form [7] of [ G,, G,, + ] is equiv- 
alent to n X ( n  + 1 )  matrix [I,, 01 (in other words, when 
G,, and G,, + are relatively left prime), there exist n X n 
matrix W,, and 1 x n vector W,, + that satisfy the rela- 
tionship [7] 

In = GnWn + Gn+,Wn+,. ( A 1 9  

The following expression is given with respect to the j th 
column vector of I,, : 

Rj = G n y  + Gn+lWn+l, ( A m  

where Wj is the j th  column vector in W,,. It is clear that 
this equation is identical to (A14). Therefore, FIR filters 
that can realize the exact inverse of a multiple-input mul- 
tiple-output system exist when the Smith canonical form 
of G is equivalent to [I,,  01. 
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